Torema pythagoras merupakan teorema mengenai hubungan panjang sisi-sisi segitiga siku-siku. Jadi setiap segitiga siku-siku berlaku teorema pythagoras. Teorema Pythagoras memainkan peran yang sangat signifikan dalam berbagai bidang yang berkaitan dengan matematika. Misalnya, untuk membentuk dasar trigonometri dan bentuk aritmatika, di mana bentuk ini menggabungkan geometri dan aljabar. Teorema ini adalah sebuah hubungan dalam Geometri Euclides di antara tiga sisi dari segitiga siku-siku. Teorema pythagoras bisa ditemukan pada materi matematika di jenjang SMP. Berikut bunyi teorema pythagoras.
KUADRAT HYPOTENUSA DARI SEGITIGA SIKU-SIKU ADALAH SAMA DENGAN JUMLAH KUADRAT DARI KAKI-KAKINYA (SISI SIKU-SIKUNYA)
Siapakah yang menemukan teorema pythagoras pertama kali? Kenapa bisa disebut sebagai teorema phytagoras. Pada abad keberapakah teorema pythagoras ditemukan? Tentunya hal ini pernah kalian pikirkan ketika kalian mempelajari teorema pythagoras yang bisa dianggap sederhana dalam mengingatnya namun memiliki ide yang begitu besar dalam dunia matematika. Soo.. untuk menjawab hal tersebut, mari kita simak penjelasan berikut yang bisa saya rangkum dari berbagai sumber.
Teorema Pythagoras mendapat namanya dari seorang ahli matematika Yunani kuno Pythagoras, karena dianggap yang pertama memberikan bukti teorema ini. Namun diyakini bahwa orang-orang mengetahui hubungan khusus antara sisi dari segitiga siku-siku, jauh sebelum Pythagoras. Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia yang pertama kali membuktikan pengamatan ini secara matematis
Pythagoras adalah seorang ahli filsafat dan matematika yang lahir tahun 570 SM di Pulau Samos (Turki). Pythagoras juga disebut sebagai 'Bapak Bilangan', dia memberikan sumbangan yang penting dalam bidang filsafat dan keagamaan.
Sekitar 4000 tahun yang lalu, orang Babilonia dan orang Cina telah menyadari fakta bahwa sebuah segitiga dengan panjang sisi 3, 4, dan 5 harus merupakan segitiga siku-siku. Mereka menggunakan konsep ini untuk membangun sudut siku-siku dan merancang segitiga siku-siku dengan membagi panjang tali ke dalam 12 bagian yang sama, seperti sisi pertama pada segitiga adalah 3, sisi kedua adalah 4, dan sisi ketiga adalah 5 satuan panjang.
Sekitar 2500 tahun SM, Monumen Megalithic di Mesir dan Eropa Utara terdapat susunan segitiga siku-siku dengan panjang sisi yang bulat. Bartel Leendert van der Waerden meng-hipotesis-kan bahwa Tripel Pythagoras diidentifikasi secara aljabar. Selama pemerintahan Hammurabi the Great (1790 - 1750 SM), tablet Plimpton Mesopotamian 32 terdiri dari banyak tulisan yang terkait dengan Tripel Pythagoras. Di India (Abad ke-8 sampai ke-2 sebelum masehi), terdapat Baudhayana Sulba Sutra yang terdiri dari daftar Tripel Pythagoras yaitu pernyataan dari dalil dan bukti geometris dari teorema untuk segitiga siku-siku sama kaki.
Pythagoras (569-475 SM) menggunakan metode aljabar untuk membangun Tripel Pythagoras. Menurut Sir Thomas L. Heath, tidak ada penentuan sebab dari teorema ini selama hampir lima abad setelah Pythagoras menuliskan teorema ini. Namun, penulis seperti Plutarch dan Cicero mengatributkan teorema ke Pythagoras sampai atribusi tersebut diterima dan dikenal secara luas. Pada 400 SM, Plato mendirikan sebuah metode untuk mencari Tripel Pythagoras yang baik dipadukan dengan aljabar dan geometri. Sekitar 300 SM, elemen Euclid (bukti aksiomatis yang tertua) menyajikan teorema tersebut. Teks Cina Chou Pei Suan Ching yang ditulis antara 500 SM sampai 200 sesudah masehi memiliki bukti visual dari Teorema Pythagoras atau disebut dengan "Gougu Theorem" (sebagaimana diketahui di Cina) untuk segitiga berukuran 3, 4, dan 5. Selama Dinasti Han (202 SM - 220 M), Tripel Pythagoras muncul di Sembilan Bab pada Seni Mathematika seiring dengan sebutan segitiga siku-siku. Rekaman pertama menggunakan teorema berada di Cina sebagai 'theorem Gougu', dan di India dinamakan "Bhaskara theorem"
No comments:
Post a Comment