Processing math: 100%

menu123

Saturday, October 26, 2019

RUMUS PENTING PADA DIMENSI TIGA

Dimensi tiga merupakan materi yang diajarkan di SMA kelas 3 pada kurikulum 2013. Pada pembahasan kali ini, saya hanya menyinggung sedikit tentang materi ini yaitu pada pembahasan mencari jarak antara dua titik, jarak antara titik dengan garis, jarak antara titik dengan bidang.
1) Jarak antara titik dengan titik
Untuk mencari jarak antara titik dengan titik sering kali digunakan Rumus Phytagoras. Rumus Phytagoras ini dapat digunakan pada segitiga siku-siku.
Pada segitiga di samping, terlihat bahwa segitiga tersebut siku-siku di titik B. Oleh karena itu dapat dibuat persamaan Phytagorasnya adalah (AC)2=(AB)2+(BC)2 atau 
b2=c2+a2 atau
c2=b2a2 atau
a2=b2c2
Trik: 
1. Gambarkan titik yang dimaksud [Biasanya soal pada kubus atau balok]
2. Buat segitiga siku-siku yang melalui titik tersebut.
3. Cari jarak titik ke titik menggunakan Rumus Phytagoras.


2) Jarak antara titik dengan garis
Jarak titik P ke garis g adalah ruas garis terpendek yang menghubungkan titik p ke garis g. Ruas garis terpendek tersebut diperoleh dengan menarik garis dari titik P tegak lurus terhadap garis g
Perhatikan gambar di bawah!

Jarak titik P ke garis g adalah jarak titik P ke titik P.
⧭Untuk mencari jarak antara titik dengan garis, ada beberapa hal penting yang harus dipahami.
a. Rumus Phytagoras [seperti yang sudah dijelaskan di atas]
b. Rumus Luas Segitiga
Terdapat tiga rumus untuk mencari luas segitiga, tergantung yang mana yang dibutuhkan.
➤ Jika sebuah segitiga diketahui panjang alas dan tingginya, untuk mencari luas segitiga dapat dilihat gambar di bawah.
Luas segitiga adalah 12alas×tinggi
Luas segitiga ABC di samping adalah
LΔABC=12BC×AB
LΔABC=12AC×BD
[Ingat: Tinggi segitiga merupakan tegak lurus dengan alasnya]
LΔABC=LΔABC
12BC×AB=12AC×BD
BC×AB=AC×BD




➤ Jika sebuah segitiga diketahui dua sisinya dan sudut yang diapit oleh sisi-sisi tersebut.
Luas segitiga ABC di samping adalah
LΔABC=12BC×AB×sin β
LΔABC=12BC×AC×sin γ
LΔABC=12AC×AB×sin α






➤ Jika sebuah segitiga diketahui ketiga sisinya, luas segitiga dapat dicari
LΔABC=s(sa)(sb)(sc) dengan s=a+b+c2









c. Rumus trigonometri aturan sin, cos, dan tan
Berdasarkan gambar di samping, bahwa
sin α=depanmiring=ACAB
cos α=sampingmiring=BCAB
tan α=depansamping=ACBC








d. Aturan cosinus
Aturan cosinus digunakan untuk mencari salah satu sudut jika diketahui ketiga sisi-sisinya atau untuk mencari salah satu sisi jika diketahui panjang sisi-sisi lainnya dan sudut yang diapit oleh sisi-sisi tersebut.
Berdasarkan gambar di samping, bahwa
a2=b2+c22bc.cos (A)
b2=a2+c22ac.cos (B)
c2=a2+b22ab.cos (C)








Trik:
1. Gambarkan titik dan garis yang dimaksud [Biasanya soal pada kubus atau balok]
2. Buat segitiga yang melalui titik dan garis tersebut [Usahakan buat segitiga yang siku-siku]
3. Cari jarak titik ke garis yaitu panjang garis dari titik tersebut yang tegak lurus dengan garis [seringnya menggunakan luas segitiga]

3. Jarak antara titik dengan bidang
Jarak titik P ke bidang v adalah ruas garis terpendek yang menghubungkan titik P ke bidang v. Ruas garis terpendek tersebut diperoleh dengan menarik garis dari titik P tegak lurus dengan bidang v
Perhatikan gambar di bawah.
PP= merupakan jarak titik P ke bidang v
Trik: Ubahlah jarak titik P ke bidang v menjadi jarak titik P ke garis g
1. Lukislah bidang w yang melalui P dan tegak lurus v
2. Lukis garis g yang merupakan perpotongan antara bidang v dan w.
3. Jarak titik P ke bidang v adalah jarak titik P ke garis g [Kemudian selesaikan dengan trik mencari jarak titik ke garis seperti penjelasan sebelumnya].

Lihat: Soal dan pembahasan mengenai jarak titik ke titik, titik ke garis, dan titik ke bidang