Soal 1, UN SMA Tapel 2015/2016 Program Studi IPA
Hasil $\int {2x(5-x)^{3}dx}=...$
A. $-\frac{1}{10}(4x+5)(5-x)^{4}+C$
B. $-\frac{1}{10}(6x+5)(5-x)^{4}+C$
C. $-\frac{1}{10}(x+5)(5-x)^{4}+C$
D. $\frac{1}{10}(4x+5)(5-x)^{4}+C$
E. $\frac{1}{2}(5+x)^{4}+C$
Hasil $\int {2x(5-x)^{3}dx}=...$
A. $-\frac{1}{10}(4x+5)(5-x)^{4}+C$
B. $-\frac{1}{10}(6x+5)(5-x)^{4}+C$
C. $-\frac{1}{10}(x+5)(5-x)^{4}+C$
D. $\frac{1}{10}(4x+5)(5-x)^{4}+C$
E. $\frac{1}{2}(5+x)^{4}+C$
Konsep dasar yang digunakan dalam perhitungan:
Integral Parsial: $\int {udv}=uv-\int {vdu}$
Integral Parsial: $\int {udv}=uv-\int {vdu}$
Pembahasan
Misal:
$u=2x$
$du=2dx$
$dv=(5-x)^{3}dx$
$v=\int {(5-x)^{3}dx}$
$\int {udv}=uv-\int {vdu}$
Misal:
$u=2x$
$du=2dx$
$dv=(5-x)^{3}dx$
$v=\int {(5-x)^{3}dx}$
$=\int {(5-x)^{3}d(5-x)}$
$=-\frac{1}{4}(5-x)^{4}$
Maka, dengan menggunakan integral parsial di dapat$\int {udv}=uv-\int {vdu}$
$=2x\left ( -\frac{1}{4}(5-x)^{4} \right )-\int {-\frac{1}{4}(5-x)^{4}2dx}$
$=-\frac{1}{2}x(5-x)^{4}+\frac{1}{2}\int {(5-x)^{4}dx}$
$=-\frac{1}{2}x(5-x)^{4}+\left ( -\frac{1}{2}.\frac{1}{5}(5-x)^{5} \right)+C$
$=-\frac{1}{2}x(5-x)^{4}-\frac{1}{10}(5-x)^{5}+C$
Catatan:$(A \times B)+(A \times C)=A \times (B+C)$ |
$=-\frac{1}{10}(5-x)^{4}(5x+(5-x))+C$
$=-\frac{1}{10}(5-x)^{4}(5x+5-x)+C$
$=-\frac{1}{10}(5-x)^{4}(4x+5)+C$
$=-\frac{1}{10}(4x+5)(5-x)^{4}+C$
Jawaban ASoal 2, UN SMA Tapel 2015/2016 Program Studi IPA
Hasil dari $\int {sin^{5}\left ( 2x \right )cos \left ( 2x \right )dx}=...$
A. $-\frac{1}{5}sin^{6}\left ( 2x \right )+C$
B. $-\frac{1}{10}sin^{6}\left ( 2x \right )+C$
C. $-\frac{1}{12}sin^{6}\left ( 2x \right )+C$
D. $\frac{1}{12}sin^{6}\left ( 2x \right )+C$
E. $\frac{1}{10}sin^{6}\left ( 2x \right )+C$
Hasil dari $\int {sin^{5}\left ( 2x \right )cos \left ( 2x \right )dx}=...$
A. $-\frac{1}{5}sin^{6}\left ( 2x \right )+C$
B. $-\frac{1}{10}sin^{6}\left ( 2x \right )+C$
C. $-\frac{1}{12}sin^{6}\left ( 2x \right )+C$
D. $\frac{1}{12}sin^{6}\left ( 2x \right )+C$
E. $\frac{1}{10}sin^{6}\left ( 2x \right )+C$
Konsep dasar yang digunakan dalam perhitungan:
- $\int {ku^{n}du}=k\frac{1}{(n+1)}u^{n+1}+C$; dengan (k) adalah konstanta
- $\frac{du}{dx}$ merupakan turunan (u) terhadap (x)
- $u=sin \left ( ax+b \right )\Rightarrow \frac{du}{dx}=a.cos \left ( ax+b \right )$
Pembahasan
$\int {sin^{5}\left ( 2x \right )cos \left ( 2x \right )dx}=$
Misal:
$\int {sin^{5}\left ( 2x \right )cos \left ( 2x \right )dx}$
$\int {sin^{5}\left ( 2x \right )cos \left ( 2x \right )dx}=$
Misal:
$u=sin \left ( 2x \right )$
$\frac{du}{dx}=2 cos \left ( 2x \right )$
$du = 2cos \left ( 2x \right )dx$
$\frac{1}{2}du = cos \left ( 2x \right )dx$
Maka:$\int {sin^{5}\left ( 2x \right )cos \left ( 2x \right )dx}$
$=\int {u^{5}.\frac{1}{2}du}$
$=\frac{1}{2}\int {u^{5}du}$
$=\frac{1}{2}.\frac{1}{6}u^{6}+C$
$=\frac{1}{12}sin^{6}\left ( 2x \right )+C$
Jawaban DSoal 3, UN SMA Tapel 2015/2016 Program Studi IPA
Hasil dari $\int {\frac{x^{2}-2}{\sqrt{6x-x^{3}}}}dx=...$
A. $-\frac{3}{2}\sqrt{6x-x^{3}}+C$
B. $-\frac{2}{3}\sqrt{6x-x^{3}}+C$
C. $-\frac{1}{6}\sqrt{6x-x^{3}}+C$
D. $\frac{1}{6}\sqrt{6x-x^{3}}+C$
E. $\frac{2}{3}\sqrt{6x-x^{3}}+C$
Hasil dari $\int {\frac{x^{2}-2}{\sqrt{6x-x^{3}}}}dx=...$
A. $-\frac{3}{2}\sqrt{6x-x^{3}}+C$
B. $-\frac{2}{3}\sqrt{6x-x^{3}}+C$
C. $-\frac{1}{6}\sqrt{6x-x^{3}}+C$
D. $\frac{1}{6}\sqrt{6x-x^{3}}+C$
E. $\frac{2}{3}\sqrt{6x-x^{3}}+C$
Konsep dasar yang digunakan dalam perhitungan:
$\int {ku^{n}du}=k\frac{1}{(n+1)}u^{n+1}+C$; dengan (k) adalah konstanta
$\int {ku^{n}du}=k\frac{1}{(n+1)}u^{n+1}+C$; dengan (k) adalah konstanta
Pembahasan
$\int {\frac{x^{2}-2}{\sqrt{6x-x^{3}}}}dx=...$
Misal:
$u=6x-x^{3}$
$\frac{du}{dx}=6-3x^{2}$
$du=(6-3x^{2})dx$
$-\frac{1}{3}du=(x^{2}-2)dx$
Jadi
$\int {\frac{1}{\sqrt{6x-x^{3}}}(x^{2}-2)}dx$
$=\int {\frac{1}{\sqrt{u}}\left ( -\frac{1}{3}du \right )}$
$= -\frac{1}{3}\int (u)^{-\frac{1}{2}}du$
$=-\frac{1}{3}\frac{1}{\frac{1}{2}}u^{\frac{1}{2}}+C$
$=-\frac{1}{3}.2u^{\frac{1}{2}}+C$
$=-\frac{2}{3}\sqrt{u}+C$
$=-\frac{2}{3}\sqrt{6x-x^{3}}+C$
Jawaban B
$\int {\frac{x^{2}-2}{\sqrt{6x-x^{3}}}}dx=...$
Misal:
$u=6x-x^{3}$
$\frac{du}{dx}=6-3x^{2}$
$du=(6-3x^{2})dx$
$-\frac{1}{3}du=(x^{2}-2)dx$
Jadi
$\int {\frac{1}{\sqrt{6x-x^{3}}}(x^{2}-2)}dx$
$=\int {\frac{1}{\sqrt{u}}\left ( -\frac{1}{3}du \right )}$
$= -\frac{1}{3}\int (u)^{-\frac{1}{2}}du$
$=-\frac{1}{3}\frac{1}{\frac{1}{2}}u^{\frac{1}{2}}+C$
$=-\frac{1}{3}.2u^{\frac{1}{2}}+C$
$=-\frac{2}{3}\sqrt{u}+C$
$=-\frac{2}{3}\sqrt{6x-x^{3}}+C$
Jawaban B
Intergal untuk program ips ada pak tu?
ReplyDeleteSama tu, sesuaikan dengan kisi-kisi
ReplyDeleteBerarti rumusnya sama ya pak tu... oke pak tu makasi
ReplyDeleteKlo menurut kisi-kisi lebih sederhana tu
DeleteKok bisa pak tu?
ReplyDeletecoba cek https://www.andrepradnya.com/2019/02/pembahasan-soal-un-integral-tentu.html
Deletemenurut kisi-kisi soal integral untuk program studi ips tu
This comment has been removed by the author.
ReplyDeleteOke pak tu... kisi kisi yang kemarin itu kisi kisi usbnnya pak tu bukan unbknya ,,,besok tu ujian sekolah matematika pak tu
ReplyDeleteOw keto
DeleteOke2 tu
Semoga berhasil tu
Iya pak tu... makasi pak tu
ReplyDeleteSemoga hasilnya tidak mengecewakan pak tu